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Introduction:

During the development of my piston engine design and analysis simulation, a surprising issue arose
when I was performing mesh-independence studies. The simulation models the flows through intake
and exhaust pipes as quasi-one-dimensional flows. As such, each pipe is decomposed into multiple
cells that run axially, down the length of the pipe. Typically, in any such CFD model, as the number of
cells is increased, the results will converge onto a final solution. When that solution is reached, the
simulation is said to have reached a point of grid- or mesh-independence, and usually, adding more
cells won't improve the fidelity of the solution. In the case of the engine simulation, I found just the
opposite occurring. As I added cells, the simulation's fidelity dropped.
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Figure 1: The Effect of Finer Mesh Size on the Power Curve

Figure 1 shows a series of power curves for a single-cylinder engine, measured from 1,000 through
12,000 rpm. For each successive curve, more cells are added to the intake and exhaust pipes, making



the length of the cells in the pipe meshes smaller. As each mesh is made finer, from a cell length of
1.25 inches to a cell length of 0.5 inches, the results actually get worse, exhibiting peaks and notches.
This is just the opposite of what I expected.

After a great deal of analysis, I determined that this behavior was being caused by the boundary
handling at the atmospheric end of the pipes. The early handling at the atmospheric end was simple,
maintaining constant, atmospheric pressure at that end. That kind of handling works well as long as the
flow is subsonic or steady, supersonic. However, when the flow is unsteady and ranging from subsonic
through supersonic--and especially including shock and expansion waves--it is insufficient.
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Figure 2: Shock Wave Refecting off of Constant-Pressure Boundary

In Figure 2, a shock wave is propagating from left to right down an exhaust pipe. The atmospheric end
is on the right of the figure, and we pick up the wave already in transit. When the shock wave reaches
the "hard", constant-pressure boundary, it is reflected back up the pipe as a strong expansion wave.
This doesn't happen in reality. When this scenario occurs in a real pipe, the shock wave exits the pipe,
then passes out, into the atmosphere, expanding in three dimensions. A strong expansion wave isn't
reflected back up the pipe.

Under most operating conditions, when the exhaust valve of a piston engine begins to open, the
pressure inside of the cylinder is much higher than atmospheric pressure, stimulating the production of
a shock wave at the valve, which can then pass through the pipe. And so shock waves are generated in
most engine exhaust systems with regularity. The simulation models the first part of this process, the
propagation of the shock wave, correctly. But when the wave reaches the end of the pipe, the
simulation is predicting a non-physical phenomenon, the reflection of the strong expansion wave. In
the simulation, the presence of the expansion wave and its passage back up the pipe produces erroneous
dynamics in the flow, affecting the power curve results. With a coarse computational mesh, the shock



wave is softened as it passes down the pipe by the numerical dissipation of the time-marching solution.
By the time the wave reaches the end of the pipe, it is significantly weakened and hence, so is the
reflected expansion wave. But as the mesh is made finer, the shock is resolved with greater accuracy
and dissipates less, making the reflected expansion stronger. After considering this situation, I realized
that I needed to implement some form of "non-reflective" boundary handling to make the simulation of
the pipe flows more realistic.

The following pages, taken directly from my development notes, detail the derivation and development
of non-reflective boundary handling for the engine simulation. This is just one small facet of the work
that makes up the engine simulation, and it took about three months of full-time work to research,
understand, derive and apply what you see here. My research began with the seminal work of
Thompson'; and then continued with more contemporary papers by Sumi, Kurotaki and Hiyami?; Selle,
Nicoud and Poinsot’; Anderson, Thomas and Van Leer?, Bogey and Bailly’; and Rohde®. T also had a
number of email discussions with Dr. Nicoud, which were quite illuminating.

In the end, I developed a system of characteristically-based equations that could be used to calculate
the rates of change of the primitive flow variables--pressure, density and velocity--and could then be
used to calculate the rates of change of the conservative, flux variables at the pipe exits. The new
handling is only applied to the endmost cell of each pipe, and only to calculate the flux variable rates.
Integration of those values to the flux variables is carried out along with that for the field cells. The
calculation of the flux variable rates for the field cells is handled as it was before this work was
accomplished.
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The results were pleasing. In Figure 3, you can see the same scenario that was run in Figure 2, but with
the new boundary handling in place. Note how much weaker the reflected expansion wave is. The
new, non-reflective boundary handling allows the shock wave to exit the pipe.

Finally, figure 4 shows the effect of the new handling on the power curves of the same single-cylinder

engine from Figure 1. Now, as the numerical mesh is made finer, we see the curves converging onto a
single solution. This is just the result I was hoping for.
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Figure 4: Power Curves with Non-Reflective Boundary Handling in Place

The results page from my notes is on page 17, where you'll find a bit more discussion. I hope the scans
of my notes are legible. Please feel free to call or write with any questions.

Regards,

Rich
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