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Introduction

The Multi-Sim flight simulation was created as an engineering tool.  Its purpose is to provide a flexible,
easy to use surrogate for a real aerospace vehicle, like an airplane, missile, rocket or even a blimp or
dirigible.  The simulation is designed to be controlled over a network interface, simply by sending it
formatted, binary commands.  The network interface allows any other program to control both the
simulation and the aircraft that it models.  The standardized interface makes the simulation available
for a multitude of uses, from simple flight dynamics studies to the core of a manned flight simulator.
It's just a matter of what kind of program you write to connect to it.  The first version of the simulation
was  written  in  1989 to support  the  development  of  an  embedded,  autonomous  control  system for
UAVs.

The simulation is called Multi-Sim because it is capable of simulating any aerospace vehicle, provided
that the vehicle's aerodynamic and mass-properties data are known.  The simulation allows the user to
select and load different vehicle models.  Radical Novelties can provide some models for the user or
the user can provide his own.  (The demo version of the system is hard-wired to model only a single
vehicle,  the  Cessna  172.)   It's  also  called  Multi-Sim because  the  system  was  written  to  operate
extremely fast.  On a 2.13 GHz laptop with a Pentium P6200 processor (running on a single core) it
runs at almost 2,500 times real-time.  5 minutes of flight can be simulated in only  one-eighth of a
second.  This means that a user can run many copies of the simulation simultaneously on a single
computer.  If you are simulating multiple aircraft—simulating real, congested airspace or testing the
control of swarms of vehicles, for example—you won't need extra hardware.  (The demo version only
runs as a single instance.)  Multiple vehicles, multiple copies, a multitude of uses.

The simulation's speed is also central to keeping it out of your way.  If you're using the simulation to
develop a control system, for example, the simulation's fast response and low resource consumption
allows your system the time it needs to do its processing.  Multi-Sim runs so fast, in fact, that there is
no problem with running your control system on the same computer.  On the other hand, because
Multi-Sim is designed to operate over a network interface, you can also run the simulation on one
computer and your control system on another.  There is no difference.  It also makes no difference
whether your program runs on a desktop or embedded system.  The simulation's original purpose was
to be connected to an embedded control system.

The simulation's software was written in such a manner that the authors can easily add new dynamic
component  models.   Along with modeling the bare-airframe dynamics of the flight  vehicle,  it  can
model any sensor or actuator on the vehicle, including their representative errors.  (The demo version
simulates only bare-airframe responses.  It contains no sensor or actuator models.)  It can also model
the  motions  and  effects  of  auxiliary  systems,  like  gimbals,  landing  gear,  speed  brakes,  etc.   The
simulation's software was designed to be modular.  And so adding or deleting models, or even changing
the physics of the models, is straight-forward.  Custom versions of the simulation are our specialty.  If
an off-the-shelf version isn't sufficient for your work, please call us and we can arrange to make a
version that matches your vehicle in every detail.

We find the system to be very useful and, when there is time to play, even fun.  We hope you will too.
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System Overview

While much of the general,  high-level  information provided in  the following parts  of this  manual
applies to all versions of the simulation, the details are specific to the demo version.  If you are using a
non-demo version of the system, please refer to its specific manual.

The simulation does its work by first calculating the forces and moments on the vehicle.  Next, it
applies those forces and moments to the six-degree-of-freedom, rigid-body equations of motion.  Those
equations yield accelerations of the body in space.  The simulation integrates those accelerations into
velocities and the velocities into displacements using a very accurate integrator.  Once these steps are
accomplished, the motion of the vehicle has been calculated--advanced--a short time into the future.
The simulation can then repeat the process, calculating updated forces and moments with the vehicle in
its new orientation, location and speed, and then following through by calculating the vehicle's updated
motion.  It does this over and over, time-marching the motion of the aircraft as far into the future as we
like.

The  cyclic  nature  of  the  calculations  provides  a  mechanism  for  another  program  to  control  the
simulated vehicle.  It simply needs to tell the simulation how to move the control surfaces and throttle
of the vehicle at the beginning of each calculation cycle.  The simulation provides for this by operating
as an Internet server.  Any program or device can connect to the simulation as a client, as shown in
Figure 1.

Figure 1:  The simulation client/server paradigm

The simulation has a small set of commands that it can execute.  When a client program connects, it
can send any of those commands, along with the necessary data, to the simulation in a TCP/IP message.
After executing the command, the simulation sends a TCP/IP response message, with the pertinent
data,  back to the client.  In this way, the simulation works in lockstep with your program, advancing
the aircraft in time using your current control inputs.
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The simulation is able to advance a specified amount of time into the future.  And so your program can
command the simulation to advance small increments in time when fine input or output resolution is
needed, or it can command it to advance large increments in time when no control input is needed.

In many flight simulation scenarios, it's  often convenient to begin simulating an aircraft in the air,
already flying, rather than having it take off from the ground and then fly to a prescribed point in space.
To make this possible, the simulation provides a “trim” command.  An aircraft flying straight and level
does so with a unique combination of angle of attack, airspeed, control surface deflections and thrust or
power.  The trim command takes angle of attack, airspeed or elevator deflection and finds the other
trim settings required to ensure that the airplane will be flying straight and level when the simulation is
started.  The demo version of the simulation has no ground reaction model, and so each flight must
begin in the air.

The demo version of the simulation executes three commands.  The first, the “hello” command, is a
good test to see whether a client is able to communicate with the simulation.  Upon receipt of the hello
command, the simulation responds by sending a message containing the time and date of the computer
on which it is running.  The second command, “trim”, tells the simulation to trim the aircraft by an
angle of attack, airspeed or elevator deflection strategy.  The simulation runs its trim routines, then
sends a message containing all of the trim settings back to the client.  The last command, “advance”,
sends the current control settings to the simulation, along with the amount of time to march into the
future.  The simulation advances the aircraft model the prescribed amount, then returns a full set of
aircraft data back to the client.

We refer to Multi-Sim client programs as “cabs”.  Like the cab of a truck or a train, they are where the
controls reside.

Demo Version Features

• 6 degree-of-freedom, non-linear dynamic model
• Simulates the Cessna 172
• “Flat Earth” spatial model
• International Standard Atmosphere model
• No ground reaction model
• No wind model
• No sensor or actuator models
• Single program instance
• 30 minute time limit
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Axis Systems and Physical Values

The simulation uses a collection of axis systems internally to do its work.  It's critically important that a
user understand these axis systems before writing software to control the simulated aircraft.  Here, we'll
discuss these axis systems, as well as the physical values that the simulation returns to describe the
aircraft's current state.

Multi-Sim calculates the aerodynamic and body-
forces  (like  thrust,  gravity,  buoyancy,  ground
loads, etc.) on the vehicle using a set of “body-
fixed” axes.  These axes have their origin at the
vehicle's center of mass and their orientation is
fixed to the geometry of the body.  (See Figure
2.)  The x-axis points forward, out the nose of the
aircraft, the y-axis points out the right wing, and
the z-axis points down, out of the aircraft's belly.
These axes remain fixed to the aircraft,  rotating
and translating with it as it moves through space.
Note that the labels of these axes are lower-case.
The  aircraft  is  acted  on  by  many  forces  and
moments, both aerodynamic and inertial.  These
forces and moments rarely align with the body-
fixed  axes.   So  the  simulation  sums  the
individual forces and moments and then finds the components of those values down each of the body-
fixed axes.  Once it has completed that process, it can calculate the linear and angular accelerations of
the vehicle.  When a cab commands the simulation to calculate forward in time using the “advance”
command, the simulation returns a full set of vehicle data.  Some of the values are measured along and
about the body-fixed axes:

•
δu
δ t The inertial acceleration of the vehicle, along its body-fixed x-axis ( ft

sec
2) .

•
δv
δ t The inertial acceleration of the vehicle, along its body-fixed y-axis ( ft

sec
2) .

•
δw
δ t The inertial acceleration of the vehicle, along its body-fixed z-axis ( ft

sec
2) .

• u The inertial velocity of the vehicle, along its body-fixed x-axis ( ft
sec) .

• v The inertial velocity of the vehicle, along its body-fixed y-axis ( ft
sec) .

• w The inertial velocity of the vehicle, along the body-fixed z-axis ( ft
sec) .

The term “inertial” here, as well as the nature of the body-fixed accelerations and velocities, can be a
little confusing.  The values all act along the body-fixed axes and reflect the motion of the vehicle
through non-moving, three-dimensional space.  (They are not relative to the air.)  But at the same time,
the body-fixed axes are free to rotate in space.  And so, for example, while the value of u can be
constant, if the body is rotating, then the velocity of the vehicle  isn't constant, and the path  of the
vehicle through space isn't a straight line.  u, v and w are essentially instantaneous velocities.
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•
δ p
δ t The angular acceleration of the vehicle about its body-fixed x-axis ( rad

sec
2) .

•
δq
δ t The angular acceleration of the vehicle about its body-fixed y-axis ( rad

sec
2) .

•
δ r
δt The angular acceleration of the vehicle about its body-fixed z-axis ( rad

sec
2) .

• p The angular velocity of the vehicle about its body-fixed x-axis—roll rate (rad
sec ) .

• q The angular velocity of the vehicle about its body-fixed y-axis—pitch rate (rad
sec ) .

• r The angular velocity of the vehicle about its body-fixed z-axis—yaw rate (rad
sec ) .

Again, these values act about the body-fixed axes, but at the same time, reflect the rotation of the axis
system in space.   So the angular velocities, for example,  aren't equal to the rate of  change of the
orientation of the vehicle, but do contribute to it.

The demo version of the simulation assumes a “flat Earth”
spatial  model.   (See  Figure  3.)   This  provides  a  three-
dimensional axis system in space.  The X- and Y-axes form a
horizontal plane and the X- and Z-axes form a vertical plane.
The axes don't rotate in space and each extends to infinity.
Essentially, we've created a flat Earth that extends off, in all
directions.   Note  that  the  Z-axis  points  vertically  down,
toward the ground, and altitude has an opposite sense.  So an
altitude of, say 1,000 feet is equal to a Z value of -1,000.
Weight always acts along the Z-axis.  The axis system has a
definite origin, at (0,0,0).  On a spherical Earth, this point has
to be established rather arbitrarily.  Also note the upper-case
axis labels.  The flat-Earth model is useful and valid for any
aircraft that doesn't fly at high speed or for long distances.
The  demo  version  of  Multi-Sim  doesn't  have  a  ground
reaction model.  So you can fly the airplane through an altitude of 0, if you want to.

When the simulation returns a full set of data after completing the “advance” command, there is a set of
data that references the flat-Earth spatial model:

•
δ X
δ t The velocity of the vehicle's center of mass, in the spatial X-direction ( ft

sec) .

•
δY
δ t The velocity of the vehicle's center of mass, in the spatial Y-direction ( ft

sec) .

•
δZ
δ t The velocity of the vehicle's center of mass, in the spatial Z-direction ( ft

sec) .

• X The position of the vehicle's center of mass, along the spatial X-axis (ft).
• Y The position of the vehicle's center of mass, along the spatial Y-axis (ft).
• Z The position of the vehicle's center of mass, along the spatial Z-axis (ft).
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• Altitude Height along the negative Z-axis (ft).

δ X
δ t

, 
δY
δ t

and 
δZ
δ t

together, form the velocity

vector of the vehicle.  At any given moment, it has a
velocity  through  space  given  by  these  three
components.  With the velocity and the flat-Earth axis
system, we can describe the orientation or attitude of
the vehicle.  The orientation of the vehicle is described
using the Euler Angles, ψ, θ and φ:

•
δψ

δt The heading angle rate (rad
sec ) .

•
δθ
δ t The orientation angle rate (rad

sec ) .

•
δϕ

δ t The roll rate (rad
sec ) .

• ψ  The first Euler rotation, about the body-fixed
z-axis—heading angle (rad).

• θ   The second Euler rotation, about the body-
fixed  y-axis—longitudinal  orientation  angle
(rad).

• φ  The  third  Euler  rotation,  about  the  body-
fixed x-axis—roll angle (When the pitch angle
is low, bank angle.) (rad).

The Euler angles are the same angles that are read from
an  aircraft's  artificial  horizon  or  attitude  indicator.
Each  combination  of  the  Euler  angles  specifies  a
unique  orientation  of  the  vehicle  in  space.   But  the
three rotations  aren't  commutative.   That is,  the user
must  apply  them  in  the  correct  order  or  the  final
orientation  will  be  wrong.   To  find  the  vehicle's
orientation, first assume that the vehicle is aligned with
the  flat-Earth  axis  system—its  body-fixed  x-axis  is
aligned with the Earth X-axis, its body-fixed y-axis is
aligned with the Earth Y-axis and its body-fixed z-axis
is aligned with the Earth Z-axis.  Now the vehicle is
rotated about its body-fixed z-axis by the value ψ.  This
establishes the heading angle of the vehicle, the angle between the Earth X-axis and the body-fixed x-
axis.  Next, the vehicle is rotated about its body-fixed y-axis by θ.  This establishes its pitch angle, the
angle between the vehicle's longitudinal axis and the horizon.  Last, the vehicle is rotated about its
body-fixed x-axis by  φ.  At low values of  θ, this establishes the vehicle's “bank angle” or the angle
between the vehicle's lateral axis and the horizon.  But at higher pitch angles, this becomes less well
defined and is simply the roll angle.  After the vehicle has been rotated through the three angles in
order, it is in the current orientation.  The sense of each of these angles is illustrated in Figures 4, 5 and
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6.

The demo version of the simulation contains no wind model.  This means that the air mass is fixed in
space and the velocity of the vehicle through the air is identical to the velocity of the vehicle through
space.  This also means that the component inertial velocities, u, v and w, reflect the motion of the
vehicle through the air.  The air flows over the vehicle in the direction opposite these velocities.  The
vehicle rarely points in the same direction as its spatial velocity vector, meaning the v and w velocity
components are rarely zero.  And this means that the velocity of the wind over the vehicle is at some
angle to the body-fixed x-axis.  We describe the relationship between the vehicle and its velocity vector
with the following angles:

• α  The angle of attack of the vehicle (rad).
• γ  The flightpath angle of the vehicle (rad).

In the side view of Figure 5, note the angle between the vehicle's body-fixed x-axis and its velocity
vector.  This is the “angle of attack” of the aircraft.  The vehicle's lift, drag and pitching moment are
functions of this angle.  Also note the angle between the vehicle's velocity vector and the horizon.  This
is the “flightpath angle” of the vehicle.

• β  The sideslip angle (rad).

On the top view of Figure 4, the angle between the vehicle's body-fixed x-axis and its velocity vector is
the “sideslip” angle.  The sense of the sideslip angle is chosen to be positive when it results in the
vehicle experiencing a positive velocity along its y-axis.  Thus, a positive angle of β results from the
nose of the vehicle swinging left. The lateral force, rolling moment and moment about the z-axis are
functions of this value.

10



Trimming the Aircraft

An airplane can fly straight and level over a range of airspeeds, from stall to its maximum speed.  At
any given speed, the airplane will be flying with a unique combination of angle of attack, elevator
deflection  and  thrust  (or  power).   These  are  the  “trim”  settings  for  that  airspeed.   To  initiate  a
simulation  run  with  the  airplane  flying  straight  and  level,  at  least  one  of  these  settings  must  be
specified, and then the rest can be calculated.  Multi-Sim has a built-in set of routines that provide this
functionality.

There are three strategies for trimming the airplane, based on which parameter is specified.  The user
can specify the trim airspeed, and then Multi-Sim will find the angle of attack, elevator deflection and
thrust that will result in the airplane being trimmed at that airspeed.  The user can also specify the angle
of attack, and Multi-Sim will find the trim airspeed, elevator deflection and thrust.  Last, the user can
specify elevator deflection and Multi-Sim will find the airspeed, angle of attack and thrust:

Trim Strategy Airspeed Angle of
Attack

Elevator
Deflection

Thrust

By Airspeed Specified Found Found Found

By Angle of Attack Found Specified Found Found

By Elevator Angle Found Found Specified Found

Note that the airspeed we talk about here is “true” airspeed, or the geometric speed with which the
airplane is moving through the air.  “Indicated” airspeed is this value adjusted for air density; the lower
the density, the lower the indicated airspeed.  So at an altitude of, say, 5,000 ft., the indicated airspeed
will be lower than the true airspeed.

If the airplane being simulated is asymmetrical across its x-z plane, or if the airplane has a thrust line
that doesn't pass through its center of mass, Multi-Sim will also find rudder and aileron deflection
settings to ensure that it is flying straight and level.  They are returned with the rest of the data.

Multi-Sim's trim command allows a user to trim the airplane to his wishes.  It takes the strategy to be
used, along with the pertinent data, and then trims the airplane.  It returns all of the trim settings, along
with the thrust, power and throttle position required to fly at those settings.  The user must take note of
the throttle setting returned.  It can be greater than 100%.  Also note the importance of transferring the
trim settings from your program's trim response data structure to its data structure for the “advance”
command.  This is necessary to ensure that the simulated airplane begins flying with the correct control
settings.

Last, note that there are settings for which there is no trim solution.  If, for example, you ask for too
low an angle of attack, there may be no airspeed at which the airplane will be able to fly.  The same is
true for too nose-down a value for elevator deflection.  The trim response contains a success field that
indicates whether the simulation was able to find a valid trim solution.
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The Simulated Vehicle

In this demo version of the program, the vehicle is hard-wired to be the Cessna 172.  (See Figure 7.)
The 172 is a single-engine, four-seat airplane created by Cessna Aircraft Corp. and is commonly used
for both training and transportation.  The data for the model used in the simulation are listed below.
The aerodynamic and mass-properties data were estimated by Jan Roskam in his book Airplane Flight
Dynamics and Automatic Flight Controls, Part I, DAR Corporation, Lawrence, KS, 1995.

• Wingspan: 35.8 ft.
• Length: 26.9 ft.
• Weight: 2,300 lbs.
• Engine: Lycoming O-320, horizontally-opposed four-cylinder
• Power: 160 hp. at sea-level
• Stall speed: 47 kts.
• Cruise speed: 122 kts. (75% power)
• C.G. Loc.: 3.5 ft. from the datum (center of range at 2,300 lbs.)

• Aileron deflection, δA, is positive for a positive moment about the x-axis, that is, a roll
to the right.  Maximum deflection is +/- 20 degrees.

• Elevator deflection, δE, is negative for a positive moment about the y-axis; negative for
the trailing edge of the elevator to move up.  Maximum deflection is -28 to 23 degrees.

• Rudder deflection, δR, is positive for a positive moment about the z-axis, that is, yawing
the nose to the right.  Maximum deflection is +/- 16 degrees.
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Running Multi-Sim

Multi-Sim is a very easy program to use.  The executable file name is Multi-Sim.exe.  In Windows
Explorer, go to the folder where you saved Multi-Sim and double-click on  Multi-Sim.exe.  The
program should come up very quickly, and you will see the Multi-Sim window, Figure 8.  The first time
you start Multi-Sim, Windows will inform you that the program is trying to access the network, and
will ask whether you want to allow it.  If you are certain that you will only connect to the simulation
from a program on the same computer, you can allow Windows to block it.  Otherwise, select the boxes
so that Windows will allow Multi-Sim to have access to your local network and/or the internet.

The Multi-Sim window is broken up into three main areas.  At
the  upper-left,  you'll  see  the  status  fields  (Figure  9).   These
provide information about the status of Multi-Sim itself.  The
first line reports the IP address of the computer.  This is useful if
you  are  running  Multi-Sim  on  one  computer  and  a  cab  on
another.   The  cab  will  have  to  know  the  IP address  of  the
computer  running  Multi-Sim.   The  next  line  shows  the
simulation's status.  When it reads “Ready”, Multi-Sim is idle and waiting for a cab to connect over
TCP/IP.  When a cab connects, it will say “Connected”.  The demo version of Multi-Sim will run for 30
minutes at a time.  The third line shows the amount of time left before the user must close the program
and  restart  it.   The  last  line  reports  the  rate  at  which  the  simulation  is  updating  its  data  fields.
Displaying  the  aircraft's  data  in  the  data  fields  takes  time  and  computing  power,  slowing  the
simulation's computations and response times.  The update rate is set to a default value of 1 second
when you start the program; the simulation will update the data fields every simulated second.  If you
want the simulation to run faster, you can set this value higher, 60 seconds, for example.  Then, the data
will be updated every simulated minute.  The “Sim Time” value is updated every simulated second
regardless of the update setting.  If you want to see the data updated at very small intervals, you can set
this value to fractions of a second.  But it will slow the simulation down dramatically.
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Figure 8:  The Multi-Sim Window

Figure 9:  Multi-Sim Status Fields



Below the status fields is  the simulation's message window (Figure
10).  Here, you will see notices posted by the simulation as it does its
work.  When the simulation is first started, it automatically initializes
all of its internal variables.  The simulation also does this when a cab
commands the simulation to trim the simulated aircraft.  It initializes
all of the vehicle values and resets the simulated time to zero.  You'll
see a message posted when this happens.  In Figure 10, you'll also note
the message, “Wind-axis forces and moments”.  This indicates that the
aircraft data file provides aerodynamic values that were measured in
the  “wind  axes”,  and  the  simulation  is  making  its  aerodynamic
calculations  based  on  that  measurement  scheme.   The  standard
versions  of  Multi-Sim allow a  user  to  select  and load  vehicle  data
files.  This message gives the user confidence that the simulation is
applying  the  data  correctly.   When  a  cab  connects,  the  system
announces, “Beginning session with xxx.xxx.xxx.xxx,” reporting the
IP address  of  the  connecting  cab.   When  the  cab  disconnects,  the
system announces, “Closing session.”  When a cab sends the “advance” command, the system doesn't
post any kind of notice.  That would slow down computation and response.  Instead, it simply advances
the simulation ahead in time and then updates the data fields.

The simulation's data fields display the current
state of the vehicle.  The values displayed here
are  described  in  the  “Axis  Systems  and
Physical  Values”  section.   The  values  are
collected  into  five  groups.   The  first  group
provides  general  information,  the  simulation
time  and  the  vehicle's  scalar  speed.   The
second  group  provides  positional  data.   The
third  group  provides  what  is  commonly
considered  “longitudinal”  data.   The  fourth
group provides “lateral/directional” data.  And
the  fifth  group  provides  power-related  data.
The left-hand columns of each group contain
the pertinent values.  The right-hand columns contain the  rates, the first derivatives with respect to
time, of some of the values

Multi-Sim's menu contains only a few items.  Selecting “File” allows a
user to select and load a vehicle data file, containing aerodynamic and
mass-properties  values.   (This  is  disabled  in  the  demo  version.)
Selecting “Simulation” then “Set data update rate” brings up a dialog
box allowing the user to change Multi-Sim's data update rate from the
default value of 1 simulated second.  Enter any value greater than zero.
Finally, the about box gives details on the system's origin and copyright
information.
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Figure 10:  The Multi-Sim Message
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Utilizing Multi-Sim:  Commands and Message Formats

This is what Multi-Sim is all about: allowing you to control the simulated vehicle.  Multi-Sim operates
as a TCP/IP server.  To communicate with the simulation, a client application must connect using a TCP
connection.  The demo version of the simulation operates on:

TCP Port Number: 20248 or 0x4F18

This port number seems to be available on most Windows 7 systems.

After establishing a TCP connection with the simulation, a client is free to send command messages
and receive response messages.  The messages and their formats follow.  Note that all values in these
messages  are  sent  little  endian.   That  is,  each  value  in  the  message  is  stored  into  its  field  least
significant byte first.  Integer values are all 32 bits (8 bytes).  Floating point values are all 64-bit (8
byte) “doubles”.  The simulation always copies the command value and includes it in its response as
the first field.  This allows a client to determine which response message it is receiving, if necessary.  In
each of the following message diagrams, memory addresses increase down the page.

Hello Command

The  hello  command  is  a  simple  command  that  aids  in  the  development  and  debugging  of  client
programs.  The command itself consists of a single value, a 32-bit zero.

Field Value Size Address

Command 0x00000000 32-bit integer Base + 0

Hello Response

The simulation responds by sending the time and date reported by the host computer.

Field Value Size Address

Command 0x00000000 32-bit integer Base + 0

Seconds – 32-bit integer +4

Minutes – 32-bit integer +8

Hours – 32-bit integer +12

Day – 32-bit integer +16

Month – 32-bit integer +20

Year – 32-bit integer +24
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Trim Command

The trim command sends the trim data to the simulation and commands it to find the angle of attack,
speed, control surface deflections and throttle setting needed to make the airplane fly straight and level.

Trim strategy values, placed in the “Trim Strategy” field, are:
• 0:  By angle of attack
• 1:  By airspeed
• 2:  By elevator deflection angle

When the simulation receives the trim command, it initializes itself, resetting the simulated time to zero
and placing the airplane at its initial position in space, in its initial direction of flight.  In the command
message, only the relevant trim command field needs to be filled in.  If the trim strategy is angle of
attack, for example, then the “Angle of Attack” field must contain a valid value.  Both “Airspeed” and
“Elevator Angle” are ignored.  X, Y and Z are the spatial locations where the airplane will be placed at
time zero.  Note that Z = -altitude.  So if you desire a starting altitude of 5,000 ft, Z must be set to
-5000.  Heading is the compass direction that you'd like the airplane to be pointed at the start of flight.

A value of 0 will align the airplane's body-fixed x-axis with the spatial X-axis.  A value of 
π
2 (90°)

will align the body-fixed x-axis with the spatial Y-axis.

Field Value Size Address

Command 0x00000002 32-bit integer Base + 0

Trim Strategy 0x0,1,2 32-bit integer +4

Angle of Attack radians 64-bit float +8

Airspeed ft/sec 64-bit float +16

Elevator Angle radians 64-bit float +24

X ft 64-bit float +32

Y ft 64-bit float +40

Z ft 64-bit float +48

Heading radians 64-bit float +56

Trim Response

After finding the trim settings for the airplane, initializing the simulation to zero time and placing the
airplane in its initial position and heading, the simulation sends the trim response back to the client.  If
the simulation was able to find a trim solution, the “Trim Result” field will contain a TRUE (-1) value.
Again note that there are some trim settings that aren't valid.  The simulation won't find a solution in
those cases and will return a FALSE (0) value.  While finding the trim settings, the simulation will also
find the throttle position required for straight and level flight.  It's possible to enter valid trim settings
that require more power than is available.  In those cases, the throttle setting will be greater than 100%.
The throttle  setting  is  scaled  linearly with power.   The simulation  includes  an engine model,  and
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maximum power decreases with air density—altitude.  So a throttle setting of 75% at 5,000 feet will
yield less power than the same setting at sea-level.  The sideslip angle will be zero for any airplane that
is symmetrical across its x-z plane.  But it will be a finite value for an airplane that isn't so.

Field Value Size Address

Command 0x00000002 32-bit integer Base + 0

Trim Result -1 (0xFFFFFFFF) or 0 32-bit integer +4

Angle of Attack (α) radians 64-bit float +8

Angle of Sideslip (β) radians 64-bit float +16

Airspeed ft/sec 64-bit float +24

Aileron Angle (δA) radians 64-bit float +32

Elevator Angle (δE) radians 64-bit float +40

Rudder Angle (δR) radians 64-bit float +48

Thrust lbs 64-bit float +56

Power ft-lb/sec 64-bit float +64

Throttle Setting Fraction (0.0 – 1.0) 64-bit float +72

Advance Command

The advance command is used to fly the simulated airplane.  It gives the simulation a full set of control
inputs, along with a time to calculate into the future.  The simulation takes the control inputs, applies
them to the airplane, then marches the airplane's response forward in time the specified amount.  The
advance time can be any floating point value except for zero.  If you need to see the airplane's attitude
and apply control inputs at fine intervals, then use small values, like 0.1 seconds.  If you are leaving the
controls fixed for a long period of time, say 60 seconds, and also don't wish to see the attitude values
until then, you can use any larger value.

Field Value  Size Address

Command 0x00000001 32-bit integer Base + 0

Advance Time seconds 64-bit float +4

Aileron Angle (δA) radians 64-bit float +12

Elevator Angle (δE) radians 64-bit float +20

Rudder Angle (δR) radians 64-bit float +28

Throttle Setting Fraction (0.0 – 1.0) 64-bit float +36

Advance Response

After receiving the advance command, the simulation marches the airplane's responses ahead in time
the specified amount.  Then it sends back a complete compliment of aircraft data.  You'll note that the
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control inputs are returned with the rest of the data.  In the standard versions of Multi-Sim, the control
actuators can be simulated.  This means that the controls' actual positions may not match the control
input values.  In the demo version of the program, the controls move instantaneously, so these values
will always match the commanded values.

Field Value Size Address

Command 0x00000001 32-bit integer Base + 0

Simulation Time sec 64-bit float +4

u Velocity ft/sec 64-bit float +12

v Velocity ft/sec 64-bit float +20

w Velocity ft/sec 64-bit float +28

p Angular Velocity rad/sec 64-bit float +36

q Angular Velocity rad/sec 64-bit float +44

r Angular Velocity rad/sec 64-bit float +52

ψ Euler Angle radians 64-bit float +60

θ Euler Angle radians 64-bit float +68

φ Euler Angle radians 64-bit float +76

X Spatial Position ft 64-bit float +84

Y Spatial Position ft 64-bit float +92

Altitude ft 64-bit float +100

Angle of Attack (α) radians 64-bit float +108

Angle of Sideslip (β) radians 64-bit float +116

Flightpath Angle (γ) radians 64-bit float +124

x-Axis Acceleration
δ u
δ t

ft/sec2 64-bit float +132

y-Axis Acceleration δ v
δt

ft/sec2 64-bit float +140

z-Axis Acceleration δw
δt ft/sec2 64-bit float +148

x-Angular Accel. 
δ p
δt

rad/sec2 64-bit float +156

y-Angular Accel. δ q
δ t

rad/sec2 64-bit float +164

z-Angular Accel. δ r
δt

rad/sec2 64-bit float +172

Heading Rate 
δψ

δt
rad/sec 64-bit float +180

Pitch Rate δθ
δt rad/sec 64-bit float +188

Roll Rate 
δ ϕ

δ t
rad/sec 64-bit float +196

18



Spatial Velocity 
δ X
δt

ft/sec 64-bit float +204

Spatial Velocity δY
δt

ft/sec 64-bit float +212

Spatial Velocity δ Z
δt

ft/sec 64-bit float +220

Aileron Angle δA radians 64-bit float +228

Elevator Angle δE radians 64-bit float +236

Rudder Angle δR radians 64-bit float +244

Thrust lb 64-bit float +252

Power ft-lb/sec 64-bit float +260

Throttle Setting fraction (0.0 – 1.0) 64-bit float +268
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Hitting the Ground Running: The Open-Loop Cab

Multi-Sim comes with an example client program, the Open-Loop Cab.  This simple cab program
allows a user to experience what it's  like to use
Multi-Sim, trimming and then flying a simulated
airplane.  The Open-Loop cab provides a set of
controls  you can use to  first  trim the simulated
airplane (See Figure 13), then, using a second set
of  controls,  you  can  fly  the  simulated  airplane
through a collection of open-loop maneuvers.  As
the  airplane  is  being  flown  through  the
maneuvers, the cab saves the aircraft data to a file,
so  you  can  view  and  graph  it  using  any
spreadsheet program.

The  Open-Loop  Cab  provides  three  services.
First,  it  allows you to become familiar  with the
way Multi-Sim works, giving you a tool that you
can use to exercise the simulation.  Second, for
the interested individual, it provides a very good
tool  to  use  for  learning the  bare-airframe flight
dynamics  of  an  airplane,  and  how  an  airplane
responds to control inputs.  Last, and most importantly, the cab provides both an example of how to
write a cab for Multi-Sim, and, because it comes with source code, provides a set of basic files that you
can build upon when writing your own cab, whatever its functionality might be.

Running the Cab

You will find two copies of the cab in the Multi-Sim distribution package.  In Windows Explorer, go to
the folder where you saved the Multi-Sim files.  Note the two sub-folders, Forth and C.  You'll find a
copy of the cab,  named  Open-Loop-Cab.exe, in each folder.  The copy in the  Forth folder is
written  in  the  Forth  programming  language,  and  the  copy  in  the  C folder  is  written  in  the  C
programming language.  They are functionally identical.  Pick one and start it by double-clicking on it.
Next, go back to the main folder and start Multi-Sim by double-click on Multi-Sim.exe.  Position
the two windows on your monitor so that you can easily see both.

You'll see that most of the buttons on the cab are deactivated.  Click on the “Connect to Server” button.
This will start a TCP/IP session with the simulation.  When the simulation accepts the connection, the
trim  keys  will  be  activated  and  the  button  you  just  clicked  will  say,  “Disconnect.”   The  word
“localhost” in the IP Address field indicates that the cab will try to connect to the server on the same
computer.  If you want, you can run the simulation on another computer.  Then, just enter the IP address
displayed in the status field of the simulation in the address field on the cab.  Click connect, and it
should be able to connect to the simulation across the network.

Once the cab has connected, you can trim the airplane and ready it for flight.  Enter a value between 0
and 10 degrees in the “Trim by Alpha” field.  Now click on “Trim by Alpha”.  The cab will send the
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trim command to the simulation, telling it to trim the airplane to the value you entered.  The cab should
now tell you that the airplane is trimmed.  Note how the speed, Del-E, power and throttle fields have
been filled in.  If the airplane was asymmetrical across its x-z plane, or if its engine was off center, the
Beta, Delta A and Delta R fields would also have finite values in them.  What you see in the fields is
the unique set of trim settings for the airplane at the angle of attack that you entered.  Now try entering
a value of -5 degrees in the Alpha field and again click “Trim by Alpha”.  The cab should tell you that
the airplane is “>UNTRIMMED<”.  This is because the angle of attack is so low that the airplane can't
support its own weight at any airspeed.  Note the corresponding message in the message window of the
simulation.  Re-enter the first value you used and trim again.  If you want, you can enter values into the
position and heading fields first, enter a value into one of the “Trim by...” fields, and then click on that
button.  The simulation will trim the airplane and put it at the position you requested.  Note how the
simulation informs you that it  is initializing and trimming the airplane,  and how the values in the
simulation's  data  field  match  the  values  in  the  cab's  fields.   The  airplane  is  now  flying  and  the
simulation is ready to advance its responses forward in time.

When the airplane is trimmed, the “Flying” buttons are activated.  Now you can click on one of them
and the cab will fly the airplane.  Each button flies the airplane through a different maneuver:

• “No Control Input” flies the airplane straight and level, a good test to see if the simulation
really found accurate trim settings for the airplane.

• “Stick Rap” flies the airplane straight and level for 3 seconds.  Next, the pilot pushes the stick
forward, deflecting the elevator 8 degrees down, holding it there for one second, then returns it
back to its original position.  Then the airplane flies for an additional 116 seconds with the
controls held in place.

• “Elevator Doublet” flies the airplane straight and level for three seconds.  Next the pilot pulls
the stick back, deflecting the elevator 4 degrees up and holds it for one second. Next, he pushes
the stick forward, deflecting the elevator 4 degrees down (from its trim position) and holds
again for one second.  Then he returns the stick to its trim position and the airplane flies for an
additional 115 seconds.

• “Aileron Doublet” flies the airplane straight and level for three seconds.  Next the pilot pushes
the stick to the left, deflecting the ailerons 4 degrees, and holds it for one second. Next, he
pushes the stick to the right, deflecting the ailerons 4 degrees the other direction, and holds
again for one second.  Then he returns the stick to its trim position and the airplane flies for an
additional 115 seconds.

• “Rudder Doublet” flies the airplane straight and level for three seconds.  Next the pilot steps
on the right rudder pedal,  deflecting the rudder 4 degrees to the right, and holds it  for one
second. Next, he steps on the left rudder pedal, deflecting the rudder 4 degrees to the left, and
holds again for one second.  Then he centers the rudder and the airplane flies for an additional
115 seconds.

• “Loop” is actually a semi-open-loop maneuver.  The pilot flies the airplane straight and level
for  three  seconds.   Next,  he  pushes  the  throttle  full-forward  and  pulls  back  on  the  stick,
deflecting the elevator up 10 degrees.  He holds the stick until the airplane completes a single
loop, then returns the throttle and stick to their trim positions, flying the airplane for 10 more
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seconds.

• “Aileron Roll” is also a semi-open-loop maneuver.  The pilot flies the airplane straight and
level for 3 seconds.  Next, the pilot pushes the stick to the right, deflecting the ailerons 10
degrees.  He holds the stick there until the airplane has rolled 360 degrees, then he centers the
stick and flies the airplane for another 10 seconds.

When you click on one of the buttons, the cab will begin flying
the airplane.  Note how the data values begin changing on the
simulation.  The button you clicked will say “working...” until
the maneuver is complete.  When the flight is done, the values
on the simulation will stop changing.  Most of the maneuvers
fly for 2 simulated minutes.  Note how they are completed in a
second or two of real time.  While flying the maneuver, the cab
saves all of the aircraft data values out to a comma-separated-
value file named FlightData.csv.  (In the same folder as
the  executable  file.)   You  can  load  this  data  into  any
spreadsheet program and look at  it.   (See Figure 14.)   Try
graphing  some  of  the  values  with  respect  to  time  using  a
“scatter” plot.  (See Figure 15.)  In graphic form, you see the
response  of  the  airplane  to  control  inputs,  and  the  “bare
airframe”  dynamics  of  the  airpalane  after  it  has  been
displaced from its trimmed state.  Even for the experienced
pilot  or  Aerospace  Engineer,  the  plots  can  be  very
illuminating.  Each time you trim the airplane, the simulated
time is set to zero and any residual motion from a previous
flight is erased.  You can string multiple maneuvers together
by clicking on the flying buttons without  retrimming.   But
keep in mind that the maneuvers are open-loop.  Nobody is on duty, keeping the airplane from entering
a very bad attitude.

That said, try playing.  You can't break the simulation or the cab.  Try trimming the airplane to different
speeds and then running it through the maneuvers.  You'll find that the airplane can react differently to
the same maneuver when it enters the maneuver at different speeds.
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Figure 14:  CSV Data in a Spreadsheet
Program

Figure 15:  Lateral/Directional Responses from
a Rudder Doublet



Getting You Started

The main reason we wrote the Open-Loop Cab is to provide you with a set of source-code files that
will get you started writing your own cabs to fly the simulated airplane.  There are two sets of source-
code files to work with.  They are located in the Forth\Source Code and C\Source Code folders
in the Multi-Sim distribution.  The Forth and C cabs are written in a parallel fashion, using files of the
same name and, within them, functions with the same name and functionality.

C Version

On the C side, the primary files are:

• DataValues.h
• NetworkSupport.h
• Commands.h

To provide the Open-Loop Cab program, they are augmented by:

• ProgrammerAids.h
• OpenLoop.h
• main.cpp

The  C  version  of  the  Open-Loop  Cab  was  written  and  compiled  using  Code::Blocks  and  its  gcc
compiler,  and was  written  with  a  Windows GUI.   As the  files  exist  in  the  directory,  if  you  have
Code::Blocks loaded on your computer, you should be able to double-click on Flight Simulation
Client.cbp and the project will open.  It should compile without any issues.  Some of the command
functions display information or report error conditions using Windows message boxes.  These require
the handle of a parent window, which you'll see passed.  If you aren't compiling for Windows, simply
remove  the  MessageBox  calls  and  remove  the  window  handle  parameter  from  the  function
declarations.

main.cpp is the top-level file and is also used as a load file.  You only need to look at it to see what
libraries are being loaded and to get the correct order of compilation for the files listed above.  The
code within the file is all related to the Windows GUI for the cab, and is only relevant if you want to
see how that was written.

DataValues.h is very important.  This is where the data structures are created that form the command
and response messages to and from the simulation.  Read the notes at the top of the file and you should
be able to understand what is going on below.  Note how all of the fields are defined for each message.
The Windows TCP/IP send and recv functions expect to be passed a character array filled with data
to be sent, or an empty array with space to place a received message.  We need to send and receive
integer  and  floating  point  data,  however.   We  accomplish  this  by  creating  character  arrays  of
appropriate length for the messages and then assigning pointers into those arrays, marking the field for
each integer or floating point value.
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NetworkSupport.h provides a set  of functions that send messages to the simulation and receive
responses.

Commands.h is  also  an  important  file.   It  provides  a  set  of  high-level  functions  that  first  form
command messages, send the command to the simulation and then receive the response.  These are the
functions that you can use to write your own cab.  They are simple to use, and there are only a few
of them.

DataValues.h,  NetworkSupport.h and  Commands.h are the only files you need to write your
own cab.  Simply load them before your own code and call the functions within Commands.h.

OpenLoop.h is included as an example.  It provides the routines that fly the airplane in the Open-Loop
Cab.  There, you will see good examples of how to use the command functions in Commands.FTH to
trim and fly the simulated airplane.

ProgrammerAids.h. is a support file for the GUI.  Here, you'll find a small set of functions that are
largely used for unit conversions.

And finally, main.cpp embodies the GUI that allows you to run the routines in OpenLoop.h from a
window (actually, a dialog box).

Forth Version

On the Forth side, the primary files are:

• Network-Support.FTH
• Data-Values.FTH
• Commands.FTH
• FlightSim.FTH

To provide the Open-Loop Cab program, they are augmented by:

• Windows-Globals.FTH
• ASCII-Float.FTH
• Open-Loop.FTH
• Client-GUI.FTH

The Forth version of the cab was compiled under VFX Forth, from MicroProcesor Engineering, Ltd., in
Southampton, UK.  http://www.mpeforth.com/.  MPE offers a trial version of VFX for free.  Go to
http://www.mpeforth.com/arena.htm#trial and scroll down to “VFX Forth for Windows.”  The source
code for the open-loop cab is all written to be ANS Forth-compliant, so you should be able to use it
under your favorite Forth system without any changes.  

FligthSim.FTH is the load file for the program.  There, you will see two VFX library files being
loaded,  NDP387.FTH,  which  supplies  floating  point  words,  and  SOCKETIO.FTH,  which  supplies
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TCP/IP networking words.  You'll need to find and load the same library words on your own Forth
system.

Network-Support.FTH provides a small set of words that are used to connect to the simulation, send
messages to the simulation and receive responses.

Data-Values.FTH is a very important file.  It creates a set of structures that form the messages for the
simulation commands and responses.  Buffers of the appropriate size are created for each message.
Then the structures are used to address each individual field within the buffers.  The buffers are loaded
with data and passed to the VFX TCP/IP writesock word to send a command.  Empty buffers are
passed to readsock to receive the response from the simulation.

Commands.FTH is also an important file.  It provides a set of high-level words that form command
messages, send them to the simulation, then receive response messages.  These are the words that you
can use to write your own cab.  They are simple to use, and there are only a few of them.  

NetworkSupport.FTH, DataValues.FTH and Commands.FTH are the only files you need to write
your own cab.  Simply load them before your own code and call the words within Commands.FTH.

Open-Loop.FTH is included as an example.  It provides the routines that fly the airplane in the Open-
Loop Cab.  There, you will see good examples of how to use the command words in Commands.FTH
to trim and fly the simulated airplane.

Windows-Globals.FTH loads any Windows API functions that aren't included in the VFX Forth kernel by
default.

Finally, Client-GUI.FTH comprises the Windows GUI for the Open-Loop Cab.  It's provided in case
you're interested in writing your own GUI.  The Forth version of the cab employs a main window for
its GUI.  In the C version of the cab, you will find a GUI with identical functionality, but written using
a dialog box and no main window.  The dialog box technique requires a great deal less code.

System Requirements

• Windows XP, Vista, 7 and 8
• Intel 80x86 processor with numeric coprocessor
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